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ABSTRACT 

This paper describes a new bi-level hierarchical method for optimizing the shape and member 

sizes of both determinate and indeterminate steel structures. The method utilizes a unique 

combination of algorithms that are organized hierarchically: the Fully Constrained Design (FCD) 

method for discrete sizing optimization is nested within SEQOPT, a gradient-based optimization 

method that operates on continuous shape variables. We benchmarked the method against 

several existing techniques using numerical examples and found that it compared favorably in 

terms of solution quality and computational efficiency. We also present a successful industry 

application of the method to demonstrate its practical benefits. 
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1. Introduction 

Engineers often are challenged to design truss and frame structures that are both 

economical and reliable. The design process involves specifying each of the following three 

aspects of the structure: (i) topology, which concerns the number and connectivity of members; 

(ii) shape, which pertains to the location of structural joints; and (iii) sizing, which involves 

defining member cross-sections [1]. The specification of each aspect of the structure typically 

corresponds to the three major stages of the engineering design process as defined by Pahl and 

Beitz [2]: conceptual, embodiment (design development) and detail. The topology of the 

structure is typically identified during conceptual design based on the functional requirements 

and architectural aesthetics, whereas the structure’s shape and member sizing are determined 

during the design development and detailed design phases, respectively. 

This paper presents a bi-level hierarchical method with a unique combination of algorithms 

to optimize the latter two aspects of the structure—shape and sizing—given a fixed topology. 

The objective of the optimization is to minimize the cost of the structure, while satisfying design 

performance requirements for safety and serviceability. In this case, the cost of the structure is 

estimated by multiplying the total steel weight by the price per unit. Steel weight is commonly 

used as a proxy for cost, provided that industry standard means and methods of construction are 

employed [3]. 

We treat shape variables as continuous in this investigation, meaning that any value can be 

assumed within the specified limits (e.g., allowing the depth of a truss to assume any value 

between, for example, 900 and 1,800 mm). Sizing variables, on the other hand, are discrete, 

meaning that only certain specified values can be assumed. This is consistent with industry 
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practice where engineers commonly select structural member sizes from a set of standard steel 

profiles that are mass-produced in specific sizes (e.g., W14x132, W14x120, etc.) [4]. Typically, 

there is a cost premium and/or quantity requirement associated with using steel profiles that do 

not conform to these standard sizes [5]. 

Traditionally, shape and sizing optimization has been an iterative process that is performed 

manually by the engineer. The first step in the process is usually to define the initial shape and 

sizing configuration of the structure based on architectural requirements, engineering rules of 

thumb, and past experience. Next, an analytical model is created that includes an idealized 

representation of the structure’s topology, shape, member sizes, and loading.  The analytical 

model is used to calculate the structure’s response to the defined loading (e.g., forces, 

deflections). These responses are then checked against the design requirements for safety and 

serviceability. Finally, the engineer reviews the results and may elect to modify either the shape 

of the structure or the sizes of constituent members. 

The number of possible shape and sizing configurations for a given design problem is 

termed the design space [6]. The size of the design space is an exponential function of the 

number of design variables and the number of possible choices for each variable. For example, a 

problem with x variables and n discrete choices per variable has 𝑛𝑥 possible configurations. The 

size of the design space for most problems encountered in industry is so large that it is 

impractical to explore all possible design alternatives [7]. Engineers using the manual methods 

described above customarily have time to evaluate only a few design alternatives [8]. Vast areas 

of the design space are, therefore, left unexplored even though they may contain better 

performing shape and sizing configurations [9]. 
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Numerous formal optimization methods have been developed to improve upon traditional 

approaches by reducing design iteration time, thereby enabling the evaluation of a greater 

number of design alternatives that can lead to better quality solutions. The majority of formal 

methods surveyed consider only member sizing design variables [10]. The inherent coupling 

between size and shape variables, however, makes it more advantageous to consider both 

variable types simultaneously [11]. In Section 2, we survey existing shape and sizing 

optimization methods and discuss their respective strengths and limitations with regard to 

generality and efficiency. 

The goal of the research presented in this paper was to develop a formal shape and sizing 

optimization method that (i) can generally be applied to problems with a mix of discrete and 

continuous variables and (ii) efficiently handles large variable sets that are typically encountered 

in industry. To achieve these objectives, the proposed method employs different optimization 

algorithms to operate on discrete sizing and continuous shape variables as discussed in Section 3. 

In Section 4, we benchmark this unique combination of algorithms against other leading 

approaches using two standard numerical examples. In Section 5, we present a successful 

industry implementation of the method on two large stadium roof trusses. Finally, in Section 6 

we summarize the lessons learned and discuss the method’s suitability for general industry 

application. 

2. Shape and Sizing Optimization 

Methods for shape and sizing optimization of trusses and frames generally can be 

categorized as either single-level or multilevel depending upon how the problem is decomposed. 
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2.1. Single-level Methods 

Most structural optimization methods described in the literature are single-level approaches 

because a single optimization algorithm is used to operate on shape and sizing variables 

simultaneously. Although the analysis may be distributed, all design decisions are made by a 

single optimizer. Both deterministic and heuristic single-level methods are described and their 

respective limitations discussed below. 

The deterministic methods that have received the most attention in the research community 

are stress-ratio (or fully stressed design), linear programming, nonlinear programming, and 

branch and bound methods [12]. The stress-ratio method seeks to proportion each member of a 

structure so that it is loaded to the maximum safe performance limit under the action of at least 

one of the applied load cases. This approach is applicable to stress and local buckling constrained 

structures. While the solution quality of the stress-ratio method has been shown to be sub-

optimal and highly dependent on the start point of the optimization process, the method has been 

widely adopted in professional practice due to its simplicity in concept and implementation [13, 

14]. The stress-ratio method may be considered to be part of the optimality criterion approach to 

structural design, and this more general concept has been the subject of considerable research for 

many years shield [15-17]. 

Linear programming was first applied to unconstrained shape and sizing optimization 

problems involving plane trusses subject to a single loading case [18]. A penalty function 

method was later developed and successfully applied to various constrained truss problems 

considering a cost objective function [19]. Sequential Linear Programming (SLP) methods have 

been applied to problems with multiple load cases and constraints on eigenfrequencies [20]. 
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Linear programming approaches, however, result in severe approximation errors when applied to 

problems with nonlinear responses [21]. To reduce these errors, researchers developed an 

augmented Lagrange multiplier method that utilizes second order Taylor series expansions to 

express stress and displacement quantities in terms of shape and sizing variables [22, 23]. The 

efficiency of the method was later improved by using Taylor series expansions to approximate 

forces, rather than stresses and displacements [11]. 

The deterministic methods described above require the first derivative of the objective and 

constraint functions with respect to the design variables. Therefore, these methods are not readily 

applicable to problems where the objective and/or constraint functions are discontinuous or are 

not easily expressed in terms of the design variables [24]. These methods also assume continuity 

of the design variables. When a discrete solution is required, approximation techniques are used 

to generate discrete variable values from the continuous results. Researchers have shown that 

these approximations can result in solutions that are sub-optimal or even infeasible [21]. 

The classical branch and bound method was originally developed for linear problems [25], 

but has been subsequently adapted to nonlinear problems [26]. Compared to the techniques 

discussed above, this method is known to generate superior quality solutions at the expense of 

computational efficiency [27]. Various approaches for approximating structural responses have 

been tested to improve the computational efficiency of the method, but branch and bound 

remains more expensive than comparable mathematical programming approaches [27, 28]. 

In recent years, there has been significant research on the application of heuristic 

techniques to structural shape and sizing problems, including genetic algorithms [24, 29-31], 

simulated annealing [32], and evolutionary strategies [33]. These methods are capable of 
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handling both discrete and continuous variables simultaneously, and there is no limitation on the 

continuity of the search space. Researchers have also demonstrated that heuristic techniques such 

as genetic and evolutionary algorithms can also be applied to conceptual structural design 

problems involving topology as well as shape and sizing variables [34, 35]. These methods allow 

for human input to guide the optimization process by manipulating algorithm parameters during 

the iterative process. A disadvantage of the heuristic methods is that they compare unfavorably 

to the deterministic methods discussed above in terms of computational efficiency [36]. 

 

2.2. Multilevel Methods 

Multilevel formulations employ more than one optimization algorithm, with each algorithm 

operating on a specific set of variables. Relatively few multilevel methods have been applied to 

optimize the shape and sizing of truss and frame structures. Vanderplaats and Moses developed 

the alternating gradient method [37] that decomposes the problem into two separate, but 

dependent, design spaces: shape (joint coordinates) and sizing (member areas). While changing 

the joint coordinates, the member areas are treated as dependent variables and vice versa. The 

sizing variables are manipulated by the fully stressed design method, and the shape variables are 

manipulated by the constrained steepest descent method. This method was successfully applied 

to a variety of indeterminate truss structures. Pedersen independently used a similar approach 

[38]. 

Subsequently, Kripakaran [39] proposed a bi-level hierarchical formulation that utilizes 

different algorithms to operate on discrete size and shape variables, respectively. The member 

sizing method is a hybrid approach that combines the following two steps in sequence: (i) a 



8 

deterministic “clustering” technique and (ii) a non-deterministic algorithm, similar to tabu search 

[40], that performs a local search to identify an optimal design. The sizing algorithm is nested 

within a deterministic algorithm that operates on the discrete shape variables (node coordinates). 

For each search step, the algorithm attempts a specified number of transitions that involve 

shifting the coordinates of one or multiple nodes based on a rectangular grid. The minimum 

weight configuration generated that satisfies the design constraints is then used as the initial 

design for the next iteration. Kripakaran’s approach was successfully applied to a series of two-

dimensional truss problems and produced design configurations that were lighter than 

comparable single-level methods. 

3. Proposed Bi-level Hierarchical Method  

The proposed method for shape and sizing optimization can generally be applied to 

problems with a mix of discrete and continuous variables and efficiently handles large variable 

sets that are typically encountered in industry. Similar to Kirpakaran’s method, the proposed 

method decomposes the problem into two hierarchical levels: shape and sizing. It differs from 

these existing multi-level approaches by the algorithms used to operate on the shape and sizing 

variables, respectively (Figure 1). We call this method BiOPT. 

The Fully Constrained Design (FCD) algorithm Flager [41, 42] was selected for sizing 

optimization because it effectively handles discrete variables and does not require continuity of 

the objective or constraint functions. FCD is more general than existing fully stressed design (as 

known as stress-ratio) methods in that it is capable of handling structures with global deflection 

constraints as well as stress and local buckling constraints. It has also been demonstrated to be 
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scalable to large structures involving over one thousand design variables and multiple 

constraints. 

The SEQOPT [43, 44] algorithm was chosen for shape optimization because it has been 

shown to be robust and efficient for problems with continuous variables, particularly when the 

objective and/or constraint functions are computationally expensive to evaluate. This is 

particularly relevant for indeterminate structures for which analytical gradients of shape design 

variables are not computable. SEQOPT is a gradient-based optimization method that uses 

surrogate models to accelerate the optimization process and a pattern search technique to avoid 

local minima. Each algorithm is described in more detail below. 

We hypothesized that BiOPT’s unique combination of algorithms would make it more 

computationally efficient than Kripakaran’s approach, as well as other single-level heuristic 

techniques.  In addition, the proposed method overcomes the limitations of the deterministic 

methods discussed in Section 2.1, namely: (i) the handling of discrete design variables and (ii) 

applicability to problems where the objective and/or constraint functions are discontinuous or are 

not expressed easily in terms of the design variables. 
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Figure 1: BiOPT architecture and data flow. Coupling above the diagonal represents sequential 

execution while coupling below the diagonal represents iteration. 
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Figure 2: LEFT - Flowchart of the FCD algorithm (sizing optimization). 

RIGHT - Flowchart of the SEQOPT optimization algorithm (shape optimization). 

3.1. Sizing Optimization: Fully Constrained Design 

For each configuration of shape variables generated, the Fully Constrained Design (FCD) 

method is employed to find the least-weight configuration of member sizes for that particular 

geometry. Based on the optimality criteria method, FCD features a novel approach to constraint 

handling and the generation of new designs that involves creating a one-to-one mapping between 
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each member size design variable and a governing constraint. Based on the value of the 

governing constraint, the section size of each member variable is adjusted incrementally from an 

ordered list of choices. Figure 2 provides an overview of the FCD process. Each process step is 

summarized below. For a complete description, please refer to [41]. 

Step 1 - Start: The initial configuration of member sizes can either be chosen at random or be 

based on a previous design solution. 

Step 2 - Analyze structure: Calculates the structure’s response to the defined loading (e.g., 

member stress, member deflection, global deflection). 

Step 3 - Scale constraints: Normalizes the structural responses by their respective allowable 

values for each sizing variable. A utilization factor of greater than unity indicates that the design 

variable configuration in question does no satisfy the problem constraints. 

Step 4 - Is global displacement satisfied? In cases where the normalized global displacement 

constraint value is greater than unity (i.e., the constraint is violated) Step 5 becomes necessary. 

Step 5 - Calculate strain energy density: A unit displacement is applied to the particular node in 

the structure where the maximum global displacement is observed and the maximum strain 

energy density for each member is calculated. Each value is then normalized by maximum 

member strain energy density calculated in the structure. Finally, the normalized strain energy 

density values are multiplied by the normalized global deflection scalar to calculate the 

constraint function for global displacement. 
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Step 6 - Evaluate critical constraint: Once all the constraint functions have been calculated, the 

values are compared to identify the critical constraint for each design variable. 

Step 7 - Modify design variables: Each design variable has a corresponding set of possible values 

which describe the available list of discrete member section choices. These sets are ordered by 

section area from low to high. New designs are generated iteratively by adjusting the variable 

values up or down the corresponding ordered list based on the critical constraint value calculated 

for each design variable. 

Step 8 - Is configuration unique? If the current design configuration is identical to a previous 

iteration of the optimization process, the optimizer enters ‘oscillation mode’. 

Step 9 - Enter oscillation mode: Individual design variables are perturbed based on their 

corresponding critical constraint values to avoid an infinite loop of repeated configurations. 

Step 10 - Convergence? The optimization process concludes in one of four possible ways: (i) a 

Fully Constrained Design is achieved; (ii) a local / global optimum is reached; (iii) the number of 

iterations without improvement specified by the user is met; (iv) the maximum number of 

iterations specified by the user is met. 

3.2. Shape Optimization: SEQOPT 

The SEQOPT algorithm [43, 44] is employed to find the least weight configuration of 

shape variables for a fixed topology. The results of the sizing optimization process serve as input 

to SEQOPT, namely, the steel weight of the best sizing configuration found and the associated 

maximum constraint value. A key component of SEQOPT involves the construction of surrogate 
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models that approximate the problem objective and constraint functions. These surrogate models 

can be evaluated very efficiently when compared to completing a FCD sizing optimization run. 

Global search mechanisms are implemented to avoid local minima. Figure 2 provides an 

overview of the SEQOPT process. Each process step is summarized below. 

Step 1 - Start: An initial set of shape configurations are generated and evaluated using a given 

structural analysis method. Note that finite element analysis (FEA) is used for the example 

applications discussed in Sections 4 and 5. These initial shape configurations are not generated at 

random, but instead are chosen to canvas the design space efficiently using orthogonal arrays 

[45, 46]. 

Step 2 - Build Surrogates: After the initial set of design configurations have been evaluated, the 

resulting data are used to create surrogate models of the optimization objective and constraint 

functions. These surrogate models are interpolating Kriging models [47]. The surrogate models 

can be evaluated more efficiently than completing an FCD optimization run, and the objective 

and constraint functions are guaranteed to vary smoothly as a function of the input variables. 

Step 3 - Optimize on Surrogates: A gradient-based Sequential Quadratic Programming (SQP) 

algorithm is run multiple times to locate optimum areas of the design space. The starting points 

for the algorithm are chosen at random. 

Step 4 - Analyze Predicted Optima: SEQOPT keeps track of the unique local optima that were 

found by the SQP algorithm in Step 3. For each optimal point predicted by the surrogate model, 

a sizing optimization is run to determine the accuracy of these predictions. 
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Step 5, 8 - Improved design? An improved design configuration is found if the objective function 

value is superior to previous configurations and all the constraints have been satisfied. 

Step 6 - Refine Surrogates: If the results predicted by the surrogate models do not match the 

actual results obtained from completing the FCD sizing optimization process, the actual results 

are used to refine and improve the surrogate models. 

 Step 7 - Local Pattern Search: The local pattern search is centered on the best configuration of 

sizing variables. The search proceeds by perturbing each design variable in turn until an 

improved configuration is found. If the local pattern search is unable to find an improved 

configuration, the current solution is guaranteed to be at least a local minimum within the 

tolerance of the pattern search. 

Step 9 - Convergence? The optimization process concludes in one of two possible ways: (i) the 

number of iterations without improvement specified by the user is met; or (ii) the maximum 

number of iterations specified by the user is met. 

4. Numerical Examples 

Two standard shape and sizing problems from the literature are used to benchmark the 

performance of the proposed method: the 18-bar cantilever truss and the 77-bar truss bridge. The 

objective of each problem is to minimize steel weight while satisfying local and global 

constraints for strength and deflection, respectively. Both examples involve continuous shape 

and discrete sizing variables. We chose the 18-bar truss example because a variety of single-level 

and multi-level methods have been applied to it. We selected the 77-bar truss example because it 
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possessed the largest design space of the examples found in the literature and, therefore, could be 

used to test the scalability of the method to a large variable set. 

We compare BiOPT to other methods in terms of: (i) computational efficiency and (ii) 

solution quality. We measure computational efficiency in terms of the total number of finite 

element analyses required to arrive at the ‘optimal’ solution. We measure solution quality in 

terms of the steel weight of the ‘optimal’ solution in light of our objective to minimize this 

quantity. 

Three different starting points for the member sizing optimization algorithm are used in the 

BiOPT optimization runs (Table 1). Only the best run is reported. 

Starting Point Description of design variable values 
1 uniform: smallest section area 
2 uniform: largest section area 
3 uniform: median section area 

Table 1: Initial sizing configuration used by BiOPT for the numerical examples. 

4.1. Example 1: 18-bar truss 

The 18-bar truss geometry is shown in Figure 3. A single load case is applied to the 

structure as described in Table 2. The material properties and constraints are described in Table 

3. To make the application of the BiOPT method comparable to the optimization results reported 

in the literature, the same number of shape variables and the same formula to calculate stresses 

are used. Hence, eight shape variables are considered, corresponding to the X and Y coordinate 

values for the four nodes on the bottom chord of the truss (node numbers 3, 4, 7 and 9 in Figure 

3). The cross-sectional areas of the candidate member sizes vary between 2 in2 and 20 in2 (1,250 

to 12,500 mm2) in steps of 0.25 in2 (156.25 mm2). 
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There is no displacement constraint specified for the problem. The allowable compressive 

(𝜎𝑖𝑐) and tensile (𝜎𝑖𝑡) stresses for each member 𝑖 are calculated as follows: 

𝜎𝑖𝑐 = −𝐾𝑖 ∗ 𝐸 ∗  𝐴𝑖/ 𝐿𝑖2   , and    𝜎𝑖𝑡  =   20 𝑘𝑠𝑖          (1) 

Where; 

𝐾𝑖 = cross-sectional geometry constant of member 𝑖 (𝐾𝑖 = 4 for this problem) 

𝐸 = Young’s modulus for the material 

𝐴𝑖 = cross-sectional area of member 𝑖 

𝐿𝑖 = length of member 𝑖 

Two different member groupings are studied. For Case 1, the members are grouped into 

four design variables as follows: A1=A4=A12=A16; A2=A6=A10=A14=A18; 

A3=A7=A11=A15; A5=A9=A13=A17. For Case 2, all 18 members can assume a different 

section size (18 total sizing variables). For complete details on the problem, refer to [11]. 

In both cases, the best design configuration reported in the literature violated the 

specified constraints by a small margin. Therefore, two different optimization runs are conducted 

to provide an equivalent basis of comparison: A and B. For run A, the maximum allowable 

constraint value was unity, meaning that none of the constraints specified in the problem 

formulation are violated. For run B, a violation equivalent in magnitude to the best design 

reported in the literature is allowed. 

The quality of the BiOPT solutions for Case 1 (Table 4) and Case 2 (Table 5) are superior 

to all existing solutions reported in the literature. An average weight savings of 3.5% is achieved 

over Kripakaran’s method [39], which previously had produced the best results. Only Hansen 

and Vanderplaat’s gradient-based approach with force approximations [11] is demonstrated to be 
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more computationally efficient for Case 1. However, that approach produces solutions of inferior 

quality compared to the other approaches listed. BiOPT is more than twice as efficient as 

Kripakaran’s method for Case 1 and over eight times more efficient for Case 2. Figure 4 shows 

the BiOPT convergence history for Case 2, as well as how the shape of the truss evolves during 

the optimization process. 

 

Figure 3: 18-bar truss geometry [39] 

Name Magnitude 
(kips) Direction Nodes 

Case 1 -20 y-axis 1,2,4,6,8 

Table 2: 18-bar truss loading 

 

 

 

 

Material Properties 
Density (lbs/in3) 0.1 
Modulus of Elasticity (ksi) 10,000 

Constraints 
Allowable tensile stress (ksi) 20 
Allowable compressive stress (ksi) varies 
Buckling coefficient (in) 4 

Table 3: 18-bar truss design parameters 
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Table 4: 18-bar truss results (Case 1) 

 [39]  This study: 
Approach A 

This study: 
Approach B 

Total weight (lb) 3,632.94 3,628.81 3,606.60 
Relative weight (%) 100.0% 99.9% 99.3% 
Num analyses 943,500 106,684 62,532 
Relative analyses (%) 100.0% 11.3% 6.6% 
Max constraint value 1.013 0.999 1.009 

Shape variables (mm) 
x3 24,100 22,718 24,359 
y3 2,900 3,046 2,874 
x5 17,700 17,125 17,477 
y5 2,300 2,413 2,703 
x7 11,400 11,031 11,422 
y7 1,800 1,951 2,025 
x9 5,500 5,516 5,703 
y9 500 576 790 

 

 

Size variables (in2) 
A1 2.25 2.25 2.25 
A2 2.75 2.50 2.50 
A3 5.75 6.25 6.50 
A4 9.50 9.75 10.00 
A5 11.75 11.75 12.00 
A6 11.50 11.00 11.00 
A7 12.75 14.50 14.00 
A8 16.25 14.75 16.25 
A9 18.25 19.00 17.75 

A10 18.75 19.00 19.75 
A11 3.50 3.25 3.25 
A12 6.25 6.50 6.25 
A13 7.75 7.50 7.00 
A14 8.50 8.25 7.75 
A15 2.75 3.00 3.50 
A16 3.75 3.50 3.25 
A17 2.50 2.25 2.25 
A18 5.00 4.75 4.25 

Table 5: 18-bar truss results (Case 2) 

 [22] [11] [31] [39] This study: 
Approach A 

This study: 
Approach B 

Total weight (lb) 4,669.72 5,713.00 4,616.82 4,608.04 4,555.90 4,321.52 
Relative weight (%) 101.3% 124.0% 100.2% 100% 98.9% 93.8% 
Num analyses ? 8 ? 176,600 54,632 65,870 
Relative analyses (%) ? 0.005% ? 100% 30.9% 37.2% 
Max constraint value ? ? ? 1.075 0.999 1.0749 

Shape variables (mm) 
x3 22,746 25,263 22,654 23,500 23,380 23,039 
y3 3,647 4,122 3,690 5,000 4,632 4,519 
x5 15,448 18,984 15,509 16,800 16,410 16,133 
y5 2,677 2,614 3,002 3,800 3,612 3,475 
x7 9,919 12,266 9,789 10,900 10,490 10,305 
y7 1,450 838 1,842 2,500 2,389 2,215 
x9 4,597 5,631 4,684 5,300 5,117 5,039 
y9 81 434 594 500 769 545 

Size variables (in2) 
A1 11.24 11.34 12.50 12.00 12.5 11.25 
A2 15.68 19.28 16.25 18.50 17.75 16.75 
A3 7.93 10.97 8.00 5.25 6.00 5.75 
A4 6.49 5.30 4.00 4.50 3.75 4.25 
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Figure 4: LEFT - Optimization convergence history for the 18-bar truss. Each search step 

corresponds to the construction / refinement of the surrogate models used in the shape 

optimization process. RIGHT - Progressive evolution of shape for 18-bar truss by search step. 

4.2. Example 2: 77-bar truss 

The next example is a single span bridge that crosses an opening of 500 ft (152.4 m) as 

shown in Figure 5. The bridge consists of 21 panel points (including end supports) equally 

spaced at 25 ft (7,620 mm). The bridge loading consists of live loads from traffic combined with 

dead loading from the deck and floor system. This loading is applied as point loads of 60 kips 

acting on the bottom chord of the truss (Table 6) as a single load case. The truss has 77 members, 

which are grouped into 39 design variables based on symmetry (Figure 5). A total of 83 discrete 

sections between W10x12 and W14x730 in the W-shape profile list [48] are the candidate values 

for the design variables. To enable comparison with prior results, a single continuous shape 

variable (𝑦1) is considered, which defines the y-coordinate values for the nodes on the top chord 
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of the truss. The stress and slenderness constraints are based on standard AISC-ASD checks [49]. 

Furthermore, the maximum displacement of the panel points in any direction is restricted to 10.0 

in. (254 mm), which is equal to 1/600 of the total span length (Table 7). 

The quality of the BiOPT solution produced is superior to the results reported by Hancebi 

[49] by approximately 1.4%. It is also worth noting that the proposed method is more than an 

order of magnitude more efficient in reaching this solution. The convergence history for the 

BiOPT method is shown in Figure 6. 

 

Figure 5: 77-bar truss geometry [50] 

Name Magnitude 
(kips) Direction Nodes 

Case 1 -60 y-axis 1-11 

Table 6: 77-bar truss loading 

 

Material Properties 
Density (lbs/in3) 0.1 
Modulus of Elasticity (ksi) 29,000 
Yield stress (ksi) 36 

Constraints 
Allowable tensile stress (ksi) 21.6 
Allowable compressive stress (ksi) varies 
Allowable displacement (in) 10 

Table 7: 77-bar truss design parameters 
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 [33] This study 

Total weight (lb) 518,054 511,037 
Relative weight 
(%) 100.0% 98.6% 

Num analyses 100,000 7,553 
Relative analyses 
(%) 100% 0.76% 

Max constraint 
value 1.11 0.99 

Shape variables (in) 
y1 607.80 608.49 

Size variables, ready sections (in2) 

A1 W10X60  
(17.6) 

W10X68  
(20.0) 

A2 W10X60 
 (17.6) 

W10X68 
 (20.0) 

A3 W12X120  
(35.3) 

W14X132 
 (38.8) 

A4 W12X170   
(50.0) 

W14X193   
(56.8) 

A5 W12X210   
(61.8) 

W14X257   
(75.6) 

A6 W14X257  
 (75.6) 

W14X283  
 (83.3) 

A7 W14X283  
 (89.5) 

W14X342   
(101.0) 

A8 W14X311   
(91.4) 

W14X370  
 (109.0) 

A9 W14X311   
(98.7) 

W14X398  
 (117.0) 

A10 W14X342   
(108.9) 

W14X426   
(125.0) 

A11 W12X120   
(35.3) 

W14X145  
 (42.7) 

A12 W12X210   
(61.8) 

W12X210   
(61.8) 

A13 W14X257   
(75.6) 

W14X257   
(75.6) 

A14 W14X283   
(89.5) 

W12X305   
(89.6) 

A15 W14X342   
(101.0) 

W14X342   
(101) 

 

 

Size variables, ready sections (in2) – cont. 

A16 W14X398   
(117.0) 

W14X370  
 (109.0) 

A17 W14X398   
(124.9) 

W14X398  
 (117.0) 

A18 W14X398   
(117.0) 

W14X426  
 (125.0) 

A19 W14X455   
(146.9) 

W14X426   
(125) 

A20 W10X49   
(14.4) 

W12X50   
(14.6) 

A21 W14X233   
(68.5) 

W12X252   
(74.0) 

A22 W14X211   
(62.0) 

W12X230   
(67.7) 

A23 W12X170   
(51.7) 

W12X190   
(55.8) 

A24 W12X136   
(42.6) 

W12X152   
(44.7) 

A25 W12X120   
(38.7) 

W12X136   
(39.9) 

A26 W14X99   
(29.1) 

W10X100   
(29.4) 

A27 W14X82   
(25.5) 

W10X88  
 (25.9) 

A30 W10X68   
(21.0) 

W14X82   
(24.0) 

A31 W10X49   
(14.4) 

W12X50   
(14.6) 

A32 W14X342   
(108.9) 

W14X398   
(117.0) 

A33 W12X120   
(38.7) 

W12X152  
 (44.7) 

A34 W12X120   
(35.3) 

W12X136  
 (39.9) 

A35 W14X109   
(32.8) 

W14X120   
(35.3) 

A36 W14X109    
(32.8) 

W14X99   
(29.1) 

A37 W14X90   
(26.5) 

W12X79   
(23.2) 

A38 W12X87   
(25.8) 

W14X61   
(17.9) 

A39 W14X74  
 (21.8) 

W12X50   
(14.6) 

Table 8: 77-bar truss results 
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Figure 6: Optimization convergence history for 77-bar truss. Each search step corresponds to 

the construction / refinement of the surrogate models used in the shape optimization process. 

5. Case Study: Arena Roof Trusses 

5.1. Background 

The main roof trusses for a 30,000 seat arena were selected to test the scalability of the 

BiOPT method and to compare the method’s performance to conventional industry practice. The 

arena has a sliding roof that fulfills UEFA and FIFA regulations for international football. The 

main roof trusses span approximately 180 meters and are simply supported as shown in Figure 7. 

The truss has a variable cross section consisting primarily of circular hollow sections with I 

sections used for the top chord of the truss. The mid-span deflection of the truss is controlled by 

pre-tensioning the cables attached to the cantilevered ends of the truss. Two design methods 
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were applied in parallel to optimize shape and sizing of the trusses: (i) the conventional design 

method of a leading engineering firm and (ii) the BiOPT method described in Section 3. The 

implementation of each method is explained below and the results are compared in terms of 

solution quality and process efficiency. 

5.2. Problem specification 

The objective of the optimization process was to minimize the total weight of the roof 

trusses while satisfying structural performance criteria for strength and serviceability as 

summarized in Table 9. The design variables included one shape variable and 17 sizing 

variables. The shape variable was the mid-span depth of the roof (d) as shown in Figure 7. The 

sizing variables were created by aggregating the 181 members in each roof truss into groups. All 

constituent members within a given group possessed the same cross section. This was done for 

two reasons: (1) to ensure symmetry, continuity, and proportion for the structural elements since 

the roof structure would be exposed, and (2) to standardize member connections to simplify the 

fabrication and erection process. The candidate section sizes within each group were chosen 

from the British Standards Institution catalogue [42]. 
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Figure 7: Structural analysis model of the roof truss selected for the shape and sizing 

optimization study. 

Objective Minimize steel weight 

Shape Variable • Mid-span depth of truss (d) 
• Range: 3m – 15m 

Sizing Variables 
• 181 members aggregated into 17 variables  
• 10-30 candidate sections per variable  

Constraints 

• Member strength [51] 
• Member deflection (span / 360 for SLS load cases) 
• Global deflection limit (500 mm at mid-span) 

Table 9: Overview of shape and sizing optimization problem formulation for the arena roof 

trusses. 

5.3. Conventional Process 

The steps involved in the conventional member sizing optimization process were similar to 

those outlined in Section 1. First, a detailed finite element analysis model of the structure was 

created. It included 38 unique loading combinations, consisting of the weight of the moving roof, 
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cladding, equipment, and the structural members, as well as live loads from wind and snow. The 

initial configuration of member sizes was determined based on the best judgment of the 

engineering team from their past experience with similar stadium roof structures. After 

completing the Finite Element Analysis (FEA) of the structure, the engineering team checked the 

structural responses against the design requirements for safety and serviceability as specified in 

Table 9. Finally, the engineering team reviewed the results and modified the shape of the 

structure and/or the sizes of constituent members. This process was repeated until the team was 

satisfied with the design configuration. 

5.4. BiOPT Implementation 

In parallel with the conventional design process, we optimized the shape and sizing 

configuration of the roof truss using the BiOPT method described in Section 3. The method was 

implemented in ModelCenter® [52], a commercial software package. It allows users to bring 

commercial or proprietary software tools into a common environment using software “wrappers” 

or “plug-ins”. The six components created in ModelCenter to implement the process are 

described below. 

Step 1 - Geometry: Generates the node coordinates for a 1-D centerline representation of all the 

truss members based on the shape variable values specified. The geometry for the truss was 

created and controlled using the parametric computer-aided design (CAD) software Digital 

Project [53]. 
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Step 2 - FEA: (i) Updates the FEA model geometry in GSA [54] based on the input from the 

Geometry component; (ii) executes the FEA and stores the desired structural responses (e.g., 

deflections, member forces and moments). See Section 3.1, step 2 of the FCD method. 

Step 3 - ASDCheck: Calculates the strength utilization ratio for each member based on the British 

engineering code of practice [55]. The input to this component is each member’s length, section 

size, and the responses (e.g., forces). A utilization ratio of less than unity indicates that the 

strength of the member is adequate for the defined loading. See Section 3.1, step 2 of the FCD 

method. 

Step 4 - PreProcessor: (i) Scales each constraint type (e.g., strength utilization, member 

deflection, global deflection) to unity based on the allowable value; (ii) determines if the global 

displacement constraint is satisfied; (iii) calculates the critical constraint for each sizing design 

variable. See Section 3.1, steps 3-6 of the FCD method. 

Step 5 - SizingOPT: (i) Modifies the member sizing variables based on the corresponding critical 

constraint values; (ii) checks whether the design configuration is unique and enters ‘oscillation 

mode’ if necessary; (iii) concludes the optimization process if the convergence criteria have been 

met. See Section 3.1, steps 7-10 of the FCD method. 

Step 6 - ShapeOPT: (a) Modifies the shape variables based on the results of the SizingOPT 

process to find the optimal (e.g., minimum weight) shape of the structure for a given topology. 

See Section 3.2, steps 1-9 of the SEQOPT method. 

5.5. Results 
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The performance of the BiOPT method on the project was compared to the conventional 

design process in terms of process efficiency and solution quality. In terms of process efficiency, 

the BiOPT method took 30 man-hours more than the traditional design method because the 

software ‘wrappers’ necessary to integrate the CAD and FEA software into the ModelCenter 

environment had to be developed. These components were designed for general use. The same 

ModelCenter implementation was used to complete the case study and all the numerical 

examples without requiring additional software development; the only modification required was 

selecting the appropriate CAD and FEA models. Therefore, the time required to set up BiOPT 

for subsequent industry applications would likely be comparable to the conventional process. 

Once set up, the engineering team evaluated a total of 36 sizing and 8 shape configurations 

using the conventional process, requiring a total of 248 man hours. In contrast, the BiOPT 

method evaluated 15,376 design alternatives in approximately five percent of the time required 

by conventional practice. The efficiency of the BiOPT process was facilitated by parallelizing 

the calculations over a network of 16 computing nodes. Each node was equipped with two Quad 

Core Xeon E5440 processors (2.83 GHz) and 16 GB of memory. See Table 10 for a summary of 

the process efficiency of each method. 

In terms of solution quality, the best design found by the BiOPT method had a total steel 

weight of 642 metric tons and satisfied all the design constraints. This represented a weight 

reduction of 24% compared to the best design that was achieved following conventional 

practices. This weight reduction translated into an estimated cost savings of approximately $1.2 

million USD for the steelwork ($600,000 USD per roof structure) assuming a unit cost of 

structural steel of $6,000 USD per metric ton. 
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DESIGN METHOD 
SIZING DESIGN CYCLE SHAPE DESIGN CYCLE TOTAL 

DURATION 
(HRS) 

Avg. cycle 
duration 

Number of 
Cycles 

Avg. cycle 
duration  

Number of 
Cycles 

Conventional 
Practice 4 hrs 36 13 hrs 8 248 hrs 

BiOPT Method  3 sec 15,376 12 min 62 13 hrs 

Table 10: Comparison of process efficiency for arena roof trusses case study 

6. Summary and Conclusions 

This paper presents the BiOPT method for shape and sizing optimization of truss and 

frame structures. The proposed method decomposes the problem into two hierarchical levels: 

shape and sizing. A specialized deterministic algorithm known as Fully Constrained Design 

(FCD) operates on the discrete sizing variables. FCD is nested within SEQOPT, a gradient-based 

optimization method that operates on the continuous shape variables. BiOPT’s unique 

combination of algorithms was tested against existing methods, using a set of numerical 

examples demonstrating the applicability of the method to determinate structures and an industry 

case study project showing the use of the method for an indeterminate structure. The main 

conclusions of the study are: 

• The proposed method is capable of handling both continuous shape variables and discrete 

sizing variables. 

• The sizing algorithm (FCD) does not require the first derivative of the objective and 

constraint functions with respect to the design variables. It is, therefore, readily 

applicable to problems where the objective and constraint functions are discontinuous or 

not easily expressed in terms of the design variables. 
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• For the truss examples, the quality of the solutions produced by BiOPT is superior to 

those produced by existing optimization techniques based on the benchmarking studies 

conducted (2.8% less steel weight on average). 

• The computational efficiency of BiOPT is superior to existing techniques, except for 

Hansen and Vanderplaat’s gradient-based approach with force approximations, which 

produced solutions of inferior quality compared to the other approaches listed. 

• BiOPT compares favorably to the conventional design process of a leading engineering 

firm based on a parallel case study involving the design of two large roof trusses for a 

30,000 seat arena. The BiOPT solution resulted in an estimated cost savings of $1.2 

million USD compared to the conventional process and required significantly less time to 

complete. 

The significant savings achieved in the case study project demonstrate the potential of the 

BiOPT method to improve design process efficiency and the quality of the resulting product. 

Further industry applications will be required to comment more generally on the performance 

and robustness of the proposed method compared to manual design iteration methods commonly 

used in industry today. The benchmarking examples in this paper included determinate structures 

with a limited number of shape variables (8 and 1, respectively). Additional benchmarking 

studies are planned to compare the performance of BiOPT to other formal methods when applied 

to determinate structures involving a larger number of shape variables as well as indeterminate 

structures. 

Further work is planned to improve the practicality of the method by enabling BiOPT to 

consider more accurate cost objective functions that explicitly consider procurement, fabrication, 
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and erection processes. Finally, to make the method more useful for conceptual design, the 

authors plan to explore the possibility of extending the proposed method to address topology as 

well as shape and sizing variables. 
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